

Effective Depth of Soil Compaction in Relation to Applied Compactive Energy

Kyu-Sun Kim, Dante Fratta, and Haifang Wen

WHRP Project 0092-08-11

Wisconsin Earth Moving Association Meeting
Wisconsin Dells, WI
December 11, 2008

Project Objectives

- To relate degree of soil compaction at various depths as a function of energy applied to the surface, compactor weight, and footprint.
- Development of a monitoring system to evaluate received energy and degree of compaction at various depths
- Determination of the influence of soil parameters (e.g., soil texture, plasticity, and moisture content) on compaction achieved.
- Draft recommendations to optimize lift thickness as function of Wisconsin construction experience and typical compaction equipment and delivered energy.

Compaction of Soils

- Several factors influence the compaction (i.e., maximum density or unit weight and optimum water content) of soils:
 - compaction method (i.e., pounding, kneading, pressure, vibration)
 - molding moisture content (soil water content when compacted)
 - compactive effort (applied energy and compactor size)
 - soil type (determines optimum moisture content and max, unit weight)
 - relative layer stiffness (stiff layer over soft layer)

Lift-thickness Specifications

Lift thickness	State DOTs	
6-inch	MA, MT, ND	
6-inch (compacted)	CT, KY, NY	
8-inch	AL, AZ, CA, DE, FL, ID, IL, IN, IA, KS, ME, MN, MS, MO, OR, SC, VT, VA, WI	
12-inch	LA, NH, NJ, OH, TX	

(Hoppe 1999; Lenke 2006)

Field Site

Testing site: Junction City (15 mi NW of Stevens Points)

Contractor: Hoffmann Construction

To Junction City

Soil Properties

• Basic properties

Soil type	Specific Gravity (Gs)	USCS (Unified Soil Classification System)	
Silty soil	2.83	SM	
Brown sand	2.66	SP	

Compaction properties

Soil type	maximum dry unit weight (kN/m³)	optimum water content (%)	
Silty soil	18.2	16.7	
Brown sand	17.1	9.5	

Field Measurements

- Soil property and response measurements:
 - Internal soil deformation: MEMS inclinometers
 - Internal pressure: pressure gauges
 - Density profile: nuclear density gauge and sand cone
 - Surface stiffness: GeoGauge
 - Internal stiffness: P-wave velocity MEMS accelerometers
 - Volumetric water content: time domain reflectometry (TDR)

Field Measurements

Originally proposed field testing matrix

1 - 6 passes					
Fine-gra	Fine-grained Soil		Coarse-grained Soil		
Sheepsfoot Roller	Rubber-tired Roller	Smooth-drum Vibratory Roller	Rubber-tired Roller		
<u>Dry</u> : 8, 12, 16, and 20" lifts	<u>Dry</u> (4-5% <w<sub>op): 8, 12, 16, and 20" lifts</w<sub>	Dry (4-5% <w<sub>op): 8, 12, 16, and 20" lifts</w<sub>	Dry (4-5% <w<sub>op): 8, 12, 16, and 20 lifts</w<sub>		
Wet (4-5%>w _{op}): 8, 12, 16, and 20" lifts	Wet (4-5%>w _{op}): 8, 12, 16, and 20" lifts	Wet (4-5%>w _{op}): 8, 12, 16, and 20" lifts	Wet (4-5%>w _{op}): 8, 12, 16, and 20" lifts		

Field Measurements

- Compaction equipment:
 - Caterpillar CS-563E Smooth-drum vibratory roller
 - Caterpillar 824C Rubber-tired roller (dozer)
 - Caterpillar 825C Sheepsfoot roller
 - Caterpillar 631G Scraper
- Two soil types: fine and coarse

Field Compactors

Specifications of Compactors

 Operating weight of compactor is related to the transferred compactive energy

Field Measurements

Actual conducted field testing matrix

Soil type compactor	Fine grained soil	Nat. moisture sand	Wet sand
Vibratory roller	12, 17, and 24" lifts	8, 13, and 24" lifts	8, 13, and 23" lifts
Rubber-tired roller	8~11, and 20" lifts	8, 13, and 20" lifts	13, and 23" lifts
Scraper	24" lift	13, and 23" lifts	-
Sheepsfoot roller	10~16, and 20" lifts	-	-

Field Testing: Energy Compaction

Measurements of changes in internal stresses and accelerations (pressure cell plate and accelerometers)

Installation of Sensors

Extraction of Sensors

Effect of Compactor on Dry Unit Weight and Water Content

Nuclear Density Gauge - Fine grained soil

Dynamic Cone Penetrometer

- Dynamic cone penetrometer (DCP): provides an indication of the strength uniformity of soil layers.
- DCP index: is a measure of shear strength as function of dry density and effective stress. That is, the DCP index profiles may give the indication of effect of compaction

Soil Stiffness Gauge

- SSG
 - SSG measures the impedance at the surface of soil
 - Soil stiffness can be calculated by the impedance

$$K = \frac{P}{\delta} \approx \frac{1.77 \cdot R \cdot E}{1 - v^2}$$

Where

R: the outer radius of ring foot

E: Young's modulus

http://www.impact-test.com

Soil Stiffness Gauge

- The use of different compactors is reflected on modulus.
- Passes also affects stiffness measurements
- Sheep foot compactor does not show improvements (depth limitation of SSG and surface disturbances)

Soil Stiffness Gauge

• Tire roller and scraper on sand created lots of soils displacement.

Soil Stiffness Gauge

 Wet sand stiffness is higher than that of natural moisture sand

Time Domain Reflectometry (TDR)

- TDR
 - Put probe in ground
 - Send electromagnetic pulse
 - Measure travel time of reflected pulse
 - Calculate velocity
 - Determine dielectric permittivity of soil
 - Calculate volumetric water content (Topp et al., 1980)
 - Volumetric water content:

$$\theta = -0.053 + 2.92 \cdot 10^{-2} K_a$$
$$-5.5 \cdot 10^{-4} K_a^2 + 4.3 \cdot 10^{-6} K_a^3$$

$$\theta = V_w/V$$

Source: Fratta 2008

Time Domain Reflectometry

Fine grained soil

• Tire Roller (Wheel dozer)

Vibratory Roller

Sheepsfoot Roller

Pressure Cell Plate

Maximum pressure response was captured for each compactor's passing

Soil Type	Compactor type	Maximum Pressure Response (kPa)		
Fine grained Soil	Vibratory	12" – 101.9	17" – 53.0	24" – 64.8
	Tire-dozer	11" - 52.2	-	20" – 56.9
	Scraper	-	-	24" - 304.3
	Sheep foot	-	16" – 202.9	24" – 126.7
Natural moisture sand	Vibratory	8" - 17.2	13" – 75.7	24" – 52.0
	Tire-dozer	8" - 161.1	13" – 316.5	20" – 302.4
	Scraper	-	13" – 417.1	23" - 330.9
Wet sand	Vibratory	8" - 122.2	13" – 61.9	24" – 42.3
	Tire-dozer	-	13" – 69.5	23" – 124.1

MEMS Measurements

- Direct measurements:
 - Internal soil deformation:
 MEMS inclinometers

Analog Devices ADLX203 iMEMS accelerometers

- Low-power consumption; Low-cost
- High sensitivity (750 mV/g)
- Dual axis "Static" Acceleration
 - Gravity: Rotation measurements

Source: http://www.dimensionengineering.com

Numerical Simulation

- FLAC (Fast Lagrangian Analysis of Continua) is a 2D continuum code for modeling geomaterials and structural behavior.
- The explicit finite difference formulation of the code makes FLAC suited for modeling geomechanical problems including static and dynamic

Stress Rotation

- Stress rotation is simulated by FLAC.
- The combination of vertical stress and horizontal stress may affect the induced shear stress -> related to shear distortion which directly affect the compaction.

